A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors.

نویسندگان

  • Michael Tanowitz
  • Mark von Zastrow
چکیده

delta and micro opioid receptors are homologous G protein-coupled receptors that are differentially sorted between divergent degradative and recycling membrane pathways following agonist-induced endocytosis. Whereas delta opioid receptors are selectively sorted to lysosomes, micro opioid receptors recycle rapidly to the plasma membrane by a process that has been proposed to occur via bulk membrane flow. We have observed that micro opioid receptors do not recycle by default and have defined a specific sequence present in the cytoplasmic tail of the cloned micro opioid receptor that is both necessary and sufficient for rapid recycling of internalized receptors. This sequence is completely distinct from a sequence shown previously to be required for recycling of the beta2 adrenergic receptor yet is functionally interchangeable when tested in chimeric mutant receptors. These results indicate that signal-dependent recycling is a more common property of G protein-coupled receptors than previously appreciated and demonstrate that such a modular recycling signal distinguishes the regulation of homologous receptors that are naturally co-expressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel endocytic recycling signal distinguishes biological responses of Trk neurotrophin receptors.

Endocytic trafficking of signaling receptors to alternate intracellular pathways has been shown to lead to diverse biological consequences. In this study, we report that two neurotrophin receptors (tropomyosin-related kinase TrkA and TrkB) traverse divergent endocytic pathways after binding to their respective ligands (nerve growth factor and brain-derived neurotrophic factor). We provide evide...

متن کامل

Alternative splicing determines the post-endocytic sorting fate of G-protein-coupled receptors.

Mu-type opioid receptors are physiologically important G-protein-coupled receptors that are generally thought to recycle after agonist-induced endocytosis. Here we show that several alternatively spliced receptor variants fail to do so efficiently because of splice-mediated removal of an endocytic sorting sequence that is present specifically in the MOR1 variant. All of the recycling-impaired r...

متن کامل

ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression

Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is requ...

متن کامل

The composition of the beta-2 adrenergic receptor oligomer affects its membrane trafficking after ligand-induced endocytosis.

The beta-2 adrenergic receptor (B2AR) is well known to form oligomeric complexes in vivo, but the functional significance of this process is not fully understood. The present results identify an effect of oligomerization of the human B2AR on the membrane trafficking of receptors after agonist-induced endocytosis in stably transfected human embryonic kidney 293 cells. A sequence present in the c...

متن کامل

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 46  شماره 

صفحات  -

تاریخ انتشار 2003